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TESTS FOR JOINT NORMALITY IN TIME SERIES

1. Motivation

iirewell-known methods f or analysis of time series, whether in the

time domain or in the frequency domain -- for fitting parametric struc-

tures, f or regression, for forecasting -- all involve second-moment sta-

tistics. If all variables are jointly normally distributed in stationary

sequences, simple first and second moments contain all the information.

If not, there is the possibility that some of the needed information is

not contained in the statistics used. When a random sequence is other

than stationary and jointly normal, it may sometimes equally well be

described and thought of as stationary but not jointly normal (which is

the terminology used here) or as nonstationary.

The topic is most easily illustrated in the context of simple regres-

sion. Suppose that we desire to be able to estimate the unobserved value

of y when x is observed, that x and y are random variables with a

joint distribution, and that we have a large sample of independent (x, y)

observations with which to estimate the relation between y and x . If

the joint distribution of x and y is normal, first and second moments

of the sample are sufficient statistics, the regression curve of y on x

(that is, the conditional expectation of y , given x) is linear and well

estimated, for many purposes, by the usual least-squares regression line.

In particular, the ordinate of the fitted line is the best estimate of y

given x , in the absence of prior information about the parameters (that

is, for a flat prior) and for any loss function that is not constant and

is a noidecreasing function of the magnitude of tile error.

When the joint distribution for x and y is not normal, the usual

regression line may be less satisfactory. Consider three examples.

(i) If the regression curve of y on x is not linear, fitting a

linear regression relation to some data may give a poor way of estimating

y for given x . Let

y -U + 01x1 + C

where Ui and 8 are constants, x is distributed N(O, 1) and c is

distributed independently N(O, a2) , and 02 < 82 . The usual regression

line is useless and suggests a much larger residual variance than thle

correct a2 . Here the marginal distribution for y is not normal.
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(ii) If x and y are marginally normal and are jointly distributed

with constant crossproduct probability ratio different from I (Plackett,

1965), the regression curve of y on x is monotone but not linear. This

is a less dramatic example of the same effect as at (i); the usual regres-

sion line is not useless, but it is not the best predictor.

(Iii) Even if the regression curve of y on x is linear, the usual

regression line may give a poor estimate of y , given x , if the loss

function is sufficiently different from squared error. Let x be distributed

N(O, 1) and, given x , let y have probability V of being equal to x ,

and probability 4 of being an independent N(O, 1) variable. The regres-

sion curve of y on x is then y - +x . Let the loss be 0 if

lerrorl !: 6 , otherwise I , where 6 is small. Then for given x ,

if say x > 0 , a good estimate of y is max(0, x - 61 . Here, as for

(i), the marginal distributions for x and y are normal.

These considerations do not seem very sinister in regard to simple

linear regression, because a scatterplot of the given (x, y) observa-

tions would most likely reveal any such effects. No special machinery

seems to be called for. Similar considerations apply to multiple regres-

sion on several explanatory variables. Obtaining a comprehensive under-
L

standing of how the variables are related through examining scatterplots

is less easy, though still possible. Various tests can also be calculated

from the residuals.

Perceiving nonnormality in the joint distribution of a single time

series, or of several related time series, is difficult from such graphical

displays as are commonly made in treating time series. A correlogram or

spectrum (or cross-correlogram or cross-spectrum) does not help much. We

here propose an adaptation to stationary time series of Mardia's test for

kurtosis in a multivariate distribution. In this preliminary report, suit-

able test statistics are proposed, some information is given concerning

their distribution under the null hypothesis, with a suggested computer

program for making the tests, and there is a brief consideration of power.

Further study of these matters, and examples of application, will be pre-

Rented later.
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2. Tests for kurtosis in stationary time series

A given time series {x t } , for some consecutive integer values for

t , is supposed to be realized from a stationary sequence of random vari-

ables {& t , and we wish to test the hypothesis that the random variables

are jointly normally distributed.

Univariate normality of the marginal distribution for Et could be

tested by making a histogram of the aggregate of given values {x t  or by

calculating (for example) a kurtosis statistic,
b 2 - N(E (x - x) 4 )/(E (x - j) 2 ) 2

t t t t

where N is the number of t-values and Nx = E x , To determine a sig-t t

nificance level for b2 , proper account would have to be taken of the

correlation structure of the sequence {&t) .

Univariate marginal normality of a stationary random sequence does not

imply joint normality, and the latter is what we are interested in here.

Mardia (1970) has considered testing joint normality, given n independent

observations of a p-variate distribution. His procedure involves linearly

transforming the p-variate distribution so that it becomes spherical, and

then he considers the n distances of the observations from their center

of gravity and constructs a kurtosis statistic by comparing the sum of the

fourth powers of the distances with the squared sum of the squared distances.

An analogous way to treat a stationary time series would be to express the

series in terms of independent identically distributed "innovations" and

then calculate kurtosis statistics either from single innovations, or from

pairs of consecutive innovations, or from triples of consecutive innovations,

etc.

Our suggested procedure is, first of all, to try to represent the

sequence in finite autoregressive form, say
(C t - 0) - Qj(&t-I - V) ..... a p (&t-p - 11) - Et  (t - 0, _I, _t2, .. I

where 1j, Oi, ..., a are constants and {c t} are independent identically

distributed "error" random variables having a normal distribution with zero

mean. For a given positive integer p , such a finite autoregressive

structure can be estimated by performing ordinary linear regression of {xtIt
on (x tI , {x t-2 .. {x } , where we may say that 1 t n if the
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whole given series is of length n + p , that is, the given series is

(x t } for I - p !S t 5 n . The residuals {u t } are the "innovations",

estimating the errors {Et I :

ut = x t - a0 - alxt_!  a px (1 :S t - n), (2)

where a0, a,, ..., a are the regression coefficients. The innovationsP
depend on the choice of p . A possible method of choosing p is to cal-

culate the empirical discrete spectrum of the given series (prewhitened and

tapered), smooth it with a suitable moving average to form (after adjust-

ing for the prewhitening) an estimated spectral density, and then try to

approximate the reciprocal of the spectral density by a low-order poly-

nomial in the cosine of the angular frequency; p is taken to be the degree

of the polynomial. We shall suppose that n is much larger than p

Formation of innovations has been recently discussed by Kleiner, Martin and

Thomson (1979), for a different purpose.

For a given vector of innovations {u } , a kurtosis statistic can be

defined from single innovations:

n n
b21 = n( u t4)/( E u t2)2 (3)

t=i t=i

A kurtosis statistic defined from pairs of consecutive innovations is

A-1 n

b22 n( Z (ut2 + Ut+ 1 2)2)/( E Ut 2 ) 2  (4)
t=l t=1i

and one based on triples of consecutive innovations is

n-2 n
ffi n( (ut2 + U 2 + u 2)2)/( Z u 2)2 (5)

t + t+2 t(

and so on.

If indeed the sequence {t is correctly described by an expression
t

of the form (1), for some finite p , the left side of (1) is a sequence of

independent identically distributed normal variables. Then if the correct

value for p is used, the innovations {u ) will presumably seem to be
t

realized from nearly independent identically distributed normal variables

and the kurtosis statistics b2 1, b2 2, ... should behave accordingly. In

particular, if n is large, b21 is expected to be near to E(c t)/(Ec t2)2
21 t t
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which is equal to 3, b 22 is expected to be near to E((ct 2 + c t+12 )2 )/(E C t2)2

which is equal to 8, b23 is expected to be near to 15, etc.

If the sequence {& } is jointly normal but, for some p , cannot be

represented in the form (1), either because a larger value for p would be

needed or because the sequence does not have a finite autoregressive expres-

sion, and if for the chosen value of p the parameters V, alt ""9 a arep

chosen to minimize the variance of the left side of (1), then the left side

constitutes a stationary sequence of normal variables that are not independent.

The innovations calculated for that p will presumably also seem to be

realized from correlated normal variables. Correlation in the innovations

may be expected to have less effect on b than on b b
21 22' 23' .

3. Distributions under the null hypothesis

To approximate the distributions of the statistics b21 , b 22 etc. under

the null hypothesis of stationarity and joint normality, it is natural to

consider moments. It has been found that the distribution of the ordinary

kurtosis statistic, Pearson's b2 or Fisher's g2 1 in samples from a

normal population, is fairly well approximated by a linear function of the

reciprocal of a X2 variable, having a distribution of Pearson's Type V,

fitted to the first three moments (Anscombe and Glynn, 1975). Accordingly

we seek to determine the first three moments of the distributions of b21 ,

b221 ..., in order to be able to make the Type V approximation.

First suppose that {u I in the definitions (3), (4) and (5) are not
t

as specified at (2) but instead are independent N(O, 1) variables. Since

the ratio on the right side of each definition is then independent of its

denominator, relations such as this hold:

E(b 21r) E(Et u t2)2r - nr E(Et ut 4 )r (r - 1, 2, ... )

The following results may be deduced.

For n 1 ,

3n
E(b21) n + 2

var(b ) M 24 n2 (n - 1) 24
21 (n + 2)2 (n + 4)(n + 6) n + 15
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Eb1 Eb21)3 -1728 n3(n - M)n -2) 1728

E~b1 - 21 (n + 2)3(n + 4)(n + 6)(n + 8)(n + 10) n(n + 37)'

y(b 6V6 a___ 14.70
1 21 n+2 n + 29

The asymptotic results after the -~ sign are correct to a factor 1 + 0(n-)

when n- is large. The skewness measure yImeans the third central moment

divided by the standard deviation cubed.

Similarly for n 2 2

22 - 8(n-1 8n
E22 n n+2 n + 3

Var(b 22) 16(n - 2)(7n 2 + 2n + 48) 112
(n +2) 2 (n + 4)(n +6) n +5I5

and for n > 3

E(b - b )3 -256(65n 5 - 358n4 + 996n 3 
- 1928n 2 + 5152n - 7680)

22 22 (n + 2)3(n + 4)(n + 6)(n + 8)(n + 10)

16640 3
n(n + 39gt)

y(b 2 2  260 te 14.04
1F~ 22 397~ /n + -31

For n~ 3,

E(b )=15(n - 2) 15n
23 n+ n+4

and for n :!4,

(b 2 3 ) 8(37n3 
-3n

2 + 296n - 2700) 296

23 (n +2) 2 (n +4)(n +6) n +14f'

and for n> 6,

E(b -Eb ) 3 192(365n 5 - 2709n4 + 9414n3 - 8516n2 + 79800n -540000)
23 23 (n + 2)3(n + 4)(n + 6)(n + 8)(n + 10)

70080

n;(n + 41 J )

I1 (b 23 37 (approimiately).
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Determination of these expressions has been partly computerized, and there

is reason to hope that correctness has been achieved. The skewness measure

( 1) of the distribution of each of the statistics b2 1, b2 2, b2 3 is nearly

the same, when n is large. This suggests that the shapes of the distribu-

tions may be similar.

It is possible in principle to obtain exact expressions for moments of

the statistics, supposing that {ut I in the definitions (3), (4), (5) are

residuals from the fitting by least squares of a linear regression relation

on given explanatory variables, the errors being independent N(O, 1) vari-

ables (Anscombe, 1961). The exact expressions depend on the projection

matrix Q that transforms the errors into the residuals, but under mild

conditions on the explanatory variables the asymptotic expressions quoted

above, correct to a factor 1 + O(n- 2) , remain valid.

For example, if only a general mean is estimated, the {ut I are t>

independent N(0, 1) variables with their average subtracted. Results for

b 21 in this case, for n > 2, are due essentially to Fisher (1930):

E(b 3(n - 1) 3n
21 n + 1 n + 2

24n(n- 2)(n- 3) 24
~21) (n + 1)2 (n + 3)(n + 5) n + 15

E(b - Eb2 1 )
3 = 1728n(n - 2)(n - 3)(n 2 - 5n + 2) 1728

(n + 1)3 (n + 3)(n + 5)(n + 7)(n + 9) n(n + 37)

The asymptotic results are the same as before. Now let {ut I be residuals

from the fitting of a general mean and also a regression coefficient on an

explanatory variable {zt ) . Let {z t } be scaled by subtracting the

average and dividing by the square root of the sum of squares (assumed to

be positive). Then Z z - 0, E z 2 = 1. We require that uniformly for
t  t t t

every t , zt - O(n-*) ; in particular, Et zt4 = 0(n-I1) . This will

happen in probability if {z I , before the scaling just mentioned, was a
t

random sample from some stationary random sequence having positive variance

and all moments finite. The condition prevents the regression coefficient

on (z t  from being largely determined by a single reading. We find (for

n_ 3)

E'b 3 (n - )(n - 3) + t z 4 1 3n
'21 n - 2 n tn + 2
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Similar exact expressions can be exhibited for other moments, though much

clumsier.

In fact, our time-series innovations {u } defined at (2) above are

residuals from the fitting by least squares, not of a linear regression

relation on given explanatory variables, but of a linear autoregression

relation. We conjecture, but have not proved, that the same asymptotic

results hold.

Below is given an APL program for making the b b and b tests
21' 22 23

on a given vector of innovations. Equivalent normal deviates (E.N.D.) are

calculated from the conjectured asymptotic moments, the Type V approximation

and the Wilson-Hilferty approximation to the distribution of X2

V TSNT U;B;D;E;M;N;S
[1] -2t34=JC 'END'
[2] O,pL}'-'COPY END FROM 1234 ASP3'
[3] -4+(A/,O<D-(+/S*-UxU)*2)A(<N/O-+IpU)AlppU
[4] -0,,-'NO GO.'
Lb] '821 = ',,3-(VxS+.xS) D
[6] 'APPROXIMATE MEAN =' ,(YM-3 l+2 N), ' S.E. = ',(vE+(24+N+5)*f2),j'

GAMMA1 ' ,G*1 4.7"(N+29)*t2
[7] ' (E.N.D. = ',(2vEND),1)'
[8] 'B22 = ',vB-(Nx+/((1S)+-14S)*2) D
L9] 'APPROXIMATE MEAN = ',(vM-8"I+3 N),', S.E. = ',(vE-(112 N+15.7)* 2),'

GAMMA1 ' ,YG -4.04(N+31.9)*2
[0] : (E.N.D. ',(2vEND), ')'
[11] 'B23 = ',vB-(Nx+/((2+S)+(14-14S)+-24S)*2) D
[12] 'APPROXIMATE MEAN = ',(YM-15 1+4 N),', S.E. = ',(E-(296+N+14.1)**2),

', GAMMA1 ',YG-13.76 (N+40.6)* 2
[13] ' (E.h.D. ',(2vEND),')'
[14] A TIME SERIES NORMALITY TEST. THE ARGUMENT IS A VECTOR OF INNOVATIONS.

V

V X -END;A
[1] A-6+4xAxA+4oA+2 G
[2] -*3t0<X 1+(B-M) E (2 A-4)* 2

L3] -0,pL4- 1'E.N.D. NOT FOUND. ',X.''
[4] X(I-(2 gxA) ((i-2 A) X)*3) (2 9xA)*2
[5] n INVOKED BY 'ITSNT'.

V
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4. Power considerations

The tests are intended to be responsive to nonnormality in the joint

distribution of the random sequence. They should preferably respond little

to specification error in a jointly normal random process, that is, to

choosing too low a value for the order p of the autoregressive structure

fitted.

Suppose that p is chosen to be I. For present purposes the mean of

the sequence may be set equal to 0. Then, if p is correct, the null

hypothesis is that {t I is a jointly normal stationary Markov sequence:

Hypothesis A: Ft = p0t-i + ct . where p is constant (JpJ < 1) and

Ct is distributed N(O, I - p2) independently of Ct-l'
Et-2' """

An alternative hypothesis involving marginal normality but not joint

normality is that { t} is a stationary Markov "jump" sequence:

Hypothesis B: With probability p/a , t = aCt-1 + Et . when a and p

are constant (0 < p a <_ 1) and Et is distributed

N(O, I - a2 ) independently of Ct-1 , &t-2' ... ; and

with probability I - p/a Et = Ct* , distributed

N(O, 1) independently of t-l, Et-2' ...

When a = 1 , a realization of this sequence is quite unlike a realization

of Hypothesis A with the same value for p . But when a is close to p ,

realizations differ in appearance only subtly: with Hypothesis B occasional

large jumps are more frequent than with Hypothesis A. Something like this

kind of joint nonnormality is sometimes observed in practice.

An alternative hypothesis involving joint normality but incorrect

specification is

Hypothesis C: { t} is a jointly normal stationary autoregressive sequence

of order greater than 1, or a jointly normal stationary

moving-average sequence.

In each case, if p is the lag-I serial correlation coefficient, let

lt = Et - Pt-I "

Then as n -. o the kurtosis statistics converge in probability:



-70-

E( 4) E( 2 + n lo-2)2 E(n 2 + n 2 + nt 2)2
t tb n t+1 t+2

b21 (En t2)2 ' 22 (Ent 2)2 ' 23 (En t2)2

Under Hypothesis A these limits are 3, 8 and 15, respectively.

Under Hypothesis B,

E(n t 4) + 12p 3(a - p)

(Ent2 )2  (1 - p2) 2

E( t2 + t+i 2)2 8 + 4P(a - p)(l + 4p 2 + ap 3 )

(En t2)2 (1 - p2 )2

Er2 +r 2 +t t2)2

E(nt 2 t+1 + = 15 + 4P(a - P)(2 + aP + 5p2 + a2p4)

(En t2)2 (1 - p2)2

(The formidable polynomial manipulations have been computerized, and the

above results are believed to be correct.)

For an asymptotic measure of power when n is large, the excesses of

these expressions over the null-hypothesis values of 3, 8, 15 may be divided

by the (conjectured) asymptotic standard deviations, /24/n, 7112/n, /2967n,

respectively. Suppose that a > 0.9 (say). Then b22  is more powerful

than b2 1 when P is less than 0.75 about (the critical value varies a

little with a ); b22 is much more powerful when p is near 0; it is

a little less powerful when p exceeds the critical value. And b2 3  is

more powerful than b22 when p is less than 0.7 about.

Under Hypothesis C, qt, 9t+1 ' nt+2 are jointly normally distributed

with, in general, nonzero correlation. Let the lag-h serial correlation

coefficient be 6h * Then

E(qt 4) E(rt 2 + n 2)23, t t+1 = 8 +4612,

(En t2)2 (En t2)2 1

E~r22 +rt t+22)2

E(nt2 + nt+1 = 15 + 862 + 46 2

(Ent2 )
2  1 2

The sampling distributions for the kurtosis statistics will be affected by

the lack of independence of {nt I , but the limiting value for b21 is
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not affected by the specification error. The limiting values for b22 and

b 2 are little affected if their excesses over the null-hypothesis values,

namely 4612 and 861 + 462 , are small compared with the respective

standard deviations. The values of 61 and 62 can be estimated from the

innovations {u t} as their lag-i and lag-2 serial correlation coefficients.
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